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Abstract—In this letter, a three-dimensional (3-D) PML for the
3-D scalar wave equation is proposed for applications in practical
finite difference time-domain schemes such as the time-domain
wave-potential (TDWP) technique and the time-domain scalar
wave equation approaches to the analysis of optical waveguides.
The theoretical formulation is based on the stretched coordinates
approach. It is shown that this PML is suitable for the termina-
tion of open problems as well as for port terminations in high-
frequency circuit problems. New PML conductivity profile is
proposed, which offers lower reflections in a wider frequency
band in comparison with the commonly used profiles.

Index Terms—Absorbing boundary conditions (ABC), finite-dif-
ference time-domain (FDTD) methods, perfectly matched layer
(PML), wave equation (WE).

I. INTRODUCTION

T HE perfectly matched layer (PML) introduced by
Berenger [1], [2] is widely recognized as one of the most

efficient numerical absorbers used in time-domain electromag-
netic (EM) solvers. It has been used in conjunction with the
finite difference time-domain (FDTD) algorithm, as well as
with the finite element time-domain (FETD) method. PML
ABCs have been also developed for most frequency-domain
techniques, such as the finite element method (FEM), the finite-
difference frequency-domain (FDFD) method and the beam
propagation method (BPM) [3]–[6].

Recently, the one-directional PML absorbing boundary con-
dition (ABC) has been applied to terminate one of the ports in a
dielectric-slab waveguide problem solved in terms of the two-di-
mensional (2-D) scalar wave equation in the time domain [7].
In this paper, we extend and validate the method proposed in
[7] to a general three-dimensional (3-D) PML for the 3-D wave
equation in the time domain. In the most recent years, the scalar
wave equations are being applied in time-domain computational
algorithms not only for optical waveguides and structures, but
also in the microwave and millimeter-wave structure analysis
[8], [9]. These new algorithms require a reliable and efficient
ABC, which can handle both open problems (i.e., radiation and
scattering) and problems involving port terminations (high-fre-
quency circuit problems). The proposed PML is applicable to
the termination of both lossless and lossy media. Here, the first
applications in loss-free problems are demonstrated.
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II. DERIVATION OF THE PML EQUATIONS

We start with the lossy wave equation (WE) in the time do-
main [8]

(1)

Here, and denote the second-order and the first-order
derivatives with respect to time. Using the stretched coordinate
approach [10], we introduce the stretched-coordinate complex
variables , , along the three Cartesian coordinates in the
Laplacian

(2)

where , . The WE in (1) is then
mapped into the frequency domain

(3)

Six auxiliary variables are introduced in a fashion similar to that
in [7]

(4)

The mapped frequency-domain WE now becomes

(5)

which can be mapped back into the time domain as

(6)

The auxiliary variables in the time domain are calculated ac-
cording to the equations in (4), which are also mapped back into
the time domain

(7)
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III. PML CONDUCTIVITY PROFILES

The profile of the PML variables is of crucial importance to
the performance of the numerical absorber. Initially, we have
implemented a variety of profiles already available in the liter-
ature, such as in [1], [11], and [12]. However, the PML is now
integrated with the wave equation where one no longer deals
with the field vectors. Importing existing PMLs directly into the
wave equation algorithm does not produce the desired absorp-
tion. The PML profile has to be modified and optimized. The
best performance is achieved with the following new modifica-
tion of the PML conductivity , which is now proposed to be of
one order higher than the order of the loss factor

(8)

(9)

Here, is the PML thickness, is the depth in the PML, is
the chosen reflection coefficient at normal incidence,is the
order and is a chosen constant.

IV. NUMERICAL RESULTS

To validate the method, we have applied this ABC to both
radiation and waveguide problems solved in terms of wave po-
tentials in the time domain. The equations are discretized using
central finite differences. The auxiliary variables , ,
are positioned half a cell “after” along the -, -, and -axis,
respectively; and , , are at the same locations as.
Here, we will consider two examples: a dipole in open space
and a hollow rectangular waveguide. The problem of the-di-
rected infinitesimal dipole, which radiates in open space, has
two planes of symmetry. Thus, the computational domain is
only one octant whose dimensions are (90, 90 , 90 ),
where mm. The potential is excited by
the -directed current of the dipole, which is a Gaussian pulse
in time. The reflection is calculated using the ratio of the re-
flected and the incident potentials, which have only a-compo-
nent,

(10)

where denotes the Fourier transform of the respective time-
dependent potential. The sampling point is chosen half-way be-
tween the excitation point and the PML end so that there is suffi-
cient time guard allowing clear separation of the incident and re-
flected wave. Identical results are obtained with de-embedding
using the incident pulse recorded in a computational volume,
whose size is 180 . We investigate three types of PML ABCs
to terminate the computational domain of the time-domain wave
equation. They have different variable profiles. One of them im-
plements the MPML conductivity profile as in [11]. The second
one uses the GPML profile [12]. The third absorber is based on
the modified profile proposed in (8) and (9). All of them are 20
cells thick; their theoretical reflection coefficient at normal in-

Fig. 1. Spectrum of the reflection in the dipole radiation problem using three
different PML conductivity profiles: 1—MPML [11], 2—GPML [12], and
3—current profiles (N = 20,R = 10 , " = 2, n = 2 in all three
cases).

Fig. 2. Spectrum of the reflection in the waveguide problem with different
PML conductivity profiles compared to Mur’s second order ABC: 1—Mur’s
second order ABC [14], 2—GPML [12], 3—MPML [11], and 4—current
profiles (N = 8,R = 10 , " = 1, n = 2, in all three PML cases).

cidence is chosen to be ; the constant is set
as , and the order defined in (8) and (9) is set to

. Their respective reflections are plotted in Fig. 1, which
shows that our modification of the PML conductivity profile of-
fers superior performance in terms of both reflection level and
frequency bandwidth. In all cases, the observation point is in the
dipole’s H-plane, halfway from the absorber. The reflections are
similar for any other observation point.

The rectangular waveguide has a cross-section of 30 mm by
15 mm. It is excited by a 10 GHz sine waveform modulated by
Blackman-Harris window function [13]. The bandlimited exci-
tation has its spectrum in the frequency band from 7.5 GHz to
12.5 GHz. The size of the computational domain is (350,
30 , 15 ), where mm. The ports were
terminated by the same three types of PML ABCs as described
above and by Mur’s second order ABC [14]. The PML is eight
cells thick and , , . The reflections
as defined in (10) are plotted in Fig. 2. The same low-reflection
broadband performance of the proposed modified PML profile
is observed.
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Fig. 3. Dependence of the reflection on the thickness of the PML: dipole—at
8 GHz, waveguide—at 10 GHz (R = 10 , " = 1, n = 2).

The dependence of the reflection level on the number of
layers in the proposed absorber is shown in Fig. 3 at specific
frequencies: 8 GHz for the dipole and 10 GHz for the wave-
guide ( , , in both examples).
However, the curves in the whole frequency band have similar
behavior. Generally, one can draw the conclusion that the same
thickness of the PML is needed for the termination of the 3-D
computational domain of the wave equation compared to the
FDTD solution of Maxwell’s equations. To achieve a reflection
under 0.1% in a broad frequency band, at least 12 PML cells
are necessary.

V. CONCLUSION

In this letter, we propose an efficient PML ABC for the 3-D
wave equation in the time domain. It is shown that the con-
ventional PML profiles are not efficient when integrated with
the second-order wave equation. Suitable low-reflection broad-
band PML variable profile is proposed. Its performance is veri-
fied in both radiation and waveguide problems. The new profile
shows versatility with respect to the geometry and the type of
the problem. The current implementation can handle also inho-

mogeneous dielectrics intersecting the PML boundary. Further
implementations include complex structures with metallic in-
clusions.
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